

Water Quality Numerous sources – Different pollutants

Runoff into pit
 Coal dust, sediment;

Groundwater inflow Salinity, pH, iron;

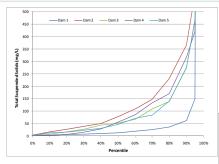
Coal stockpiles Coal dust;

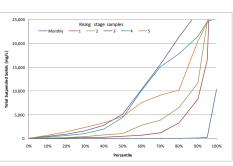
Haul roads
 Sediment, coal dust;

Vehicle maintenance Hydrocarbons;

Fuel storage Hydrocarbons;

Overburden runoff Sediment;


Overburden leachate Salinity, acid leachate;


Washery tailings disposal Sediment, salinity, pH?

Comparison of sediment dam and drainage line water quality

Mine Water Quantity & Quality

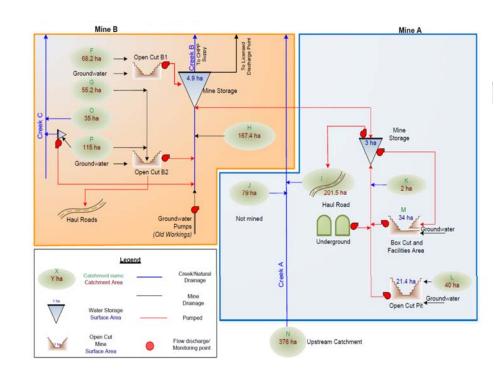
- Highly variable over time;
- ☐ Pit & overburden area variable throughout mine life;
- ☐ Groundwater inflow to pit variable generally related to depth of pit;
- ☐ Groundwater inflow to U/G workings variable depending of mine layout;
- ☐ Runoff highly variable depending on climate (typical annual variation: 20% 300% of average)
- ☐ Consequences of changes to mine plan

6

Management Issues

- Sufficient supply for mine operations:
 - Dust suppression
 - Longwall operation
 - Coal washing
- Sufficient storage to meet operational requirements
 - Reliability of supply
 - Storage of excess without compromising production
 - Treatment and discharge in the event of excess?
- Minimise discharge (zero discharge preferred)
 - Divert external catchments
 - Enhanced use/loss (irrigation, evaporation)
 - Water quality (sediment, salinity)
 - Treatment
 - HRSTS.

Regulatory Issues


■ Water access licenses for incidental take


- Unavoidable groundwater make
- Problem when linked to 'cease to pump' rules in the WSP
- Aquifer interference policy
- Return flows not counted

■ Water access licenses for supply;

- Availability of surface and groundwater licenses
- Supply reliability
- □ Discharge licenses/permits

□ Complex interactions between

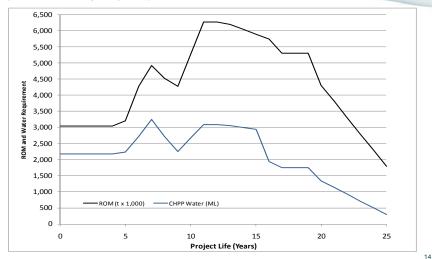
- Evolving mine landform
- Rehabilitated and 'natural' catchments
- Water management system
- Storage requirements

■ Water balance highly dependent on climate

☐ Increasing salinity:

- Deeper pits
- Underground mining

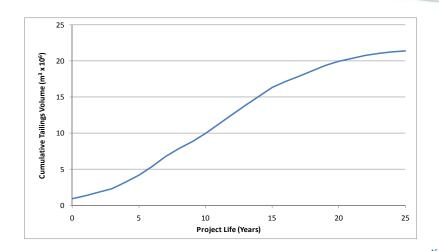
Issues



- ☐ Alterations to mine plan and production
- □ Short term variation in CHPP throughput
- □ Operating rules for exchange of water between mines
- **□** Opportunities for discharge from sites

Predicted Annual ROM Supply and CHPP Water Requirement

FVANS & PECK


(Assumes slurry disposal)

13

Projected Tailings Storage Requirements

Mine Water Balance

- Water sources (internal and external)
- Water demands
 - Dust suppression,
 - Coal processing,
 - Underground operations
- ☐ Losses / discharge
- Storage

Water Demands

- Dust suppression,
 - Mainly achieved by water spray (chemicals in special situations)
 - Differentiate between stockpiles and haul roads
- Consistency of approaches by air quality modellers and hydrologists?
- Underground operations
 - Typical longwall 1 ML/day
 - Dust suppression

Dust suppression – haul roads

Dust Suppression

- Mainly achieved by water spray (chemicals in special situations)
- Dependent on haul area and weather (rainfall and wind)
- Little benchmarked data in Australia
- South African research water required to maintain wet surface (effects of road albedo and wheel movement)
- □ Dust suppression coal stockpiles
 - Dependent on dump height and reclaim process
- Consistency of approaches by air quality modellers and hydrologists?

18

Water Demands

17

- ☐ Coal processing dependent on
 - Mining process and source characteristics (Open-cut ± 12% fines; Underground ± 8% fines)
 - Dewatering process

Treatment	Relative Water Requirements
Slurry disposal	100%
Secondary flocculation	90%
Paste thickener	60%
Belt press	40%
Pressure filter	30%
Solid bowl centrifuge	30%

- ☐ Underground operations
 - Typical longwall 1 ML/day
 - Dust suppression

Why do we use models?

- Prediction of interaction between the mine, climate and the surrounding environment
- Assessment (design) of the location and size of facilities necessary to manage water
- Understanding the risks
- Ongoing management of water at an operating site:
 - Are predictions valid/correct?
 - Does management need to change?
 - Are new/additional facilities necessary?

Modelling Considerations

- Adequacy of supply enough water?
- □ Adequate storage
 - Seasonal variation of rainfall and evaporation
 - Probability of extreme sequences of rainfall
 - Variation of groundwater make
 - Year-to-year carry-over of water
- □ Discharge frequency, volume and quality
- Relevant timescale to characterise runoff and mine operations
- □ Data requirements and availability

Mine Site Models

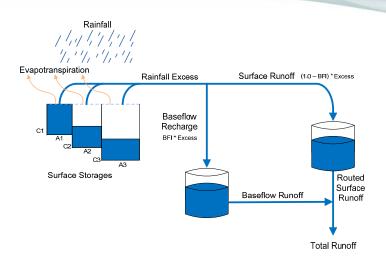
☐ System models:

- Water gains and losses
- Storages
- Water conveyance (channels, pumps, pipelines)
- Operating rules/triggers

□ Process models:

- Groundwater make
- Runoff from different surfaces
- Water uses (dust suppression, coal washing, etc)
- Losses (evaporation, seepage)

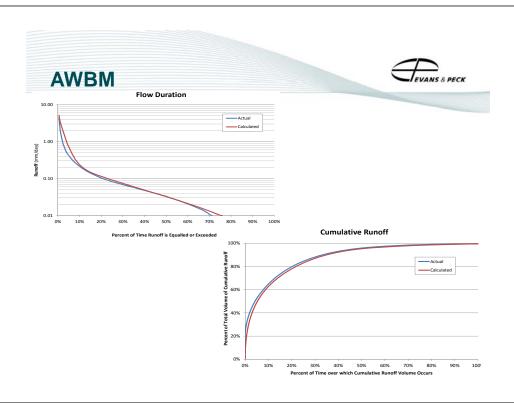
71ML 37ML 45ML 160L/s On Site Demands 105L/s 35L/s Year 3 to 21 Add SD3, SD4 & SD5 Pipeline SPILL 80L/s To 250L/s SPILL Back Creek GW. Year 3 to 21 Year 1 to 2


COPY \$ 100

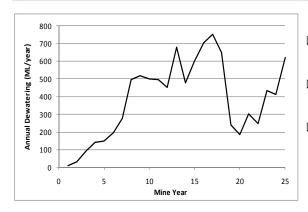
Col of P Darge
In this part of the second seco

22

AWBM

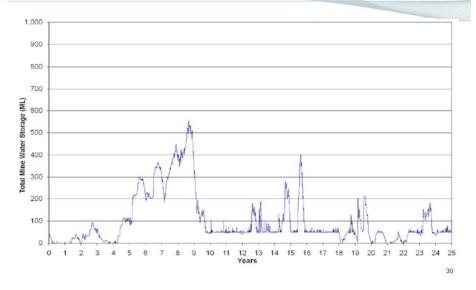


Model Parameter Estimation Leave One Out Cross Validation

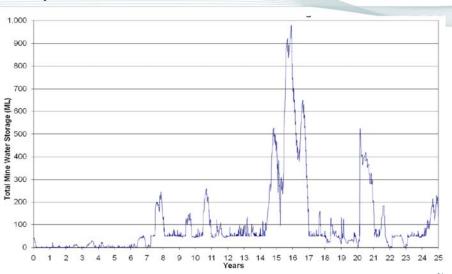


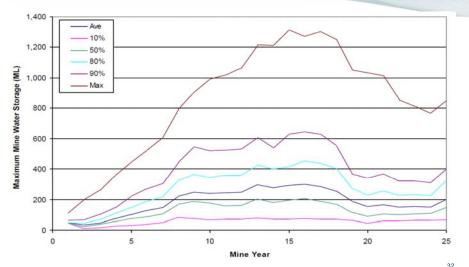
- ☐ Automatic AWBM calibration for full data set with one year omitted
- ☐ Use estimated parameters to model runoff for missing year
- □ Assess adequacy of fit between modelled and observed (Total volume, R², Nash-Sutcliffe coefficient of efficiency, flow duration, etc)
- Repeat process taking out successive years of data
- □ Assess statistics of parameters and goodness of fit to select parameters for adoption

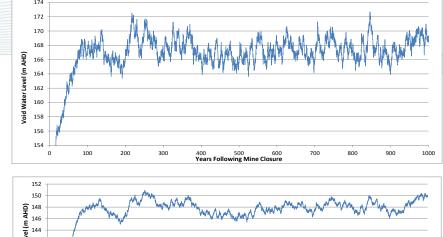
Groundwater Inflows to Pit and Underground Workings

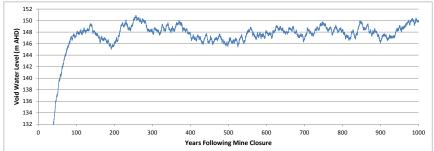


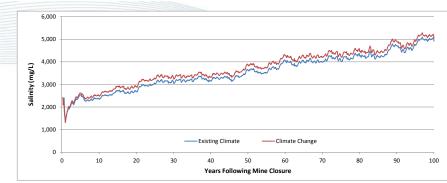
- Derived from groundwater modelling
- Relatively steady day to day
- Significant variation over mine life – depends on mine plan

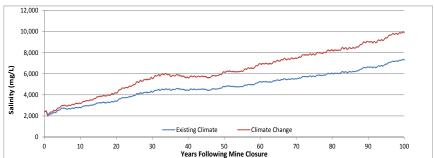

Storage Requirements – median rainfall Sequence: A


Storage Requirements – median rainfall Sequence: B


Water quality modelling




- □ Salt balance conservation of mass
- ☐ Final void salinity water and salt balance:
 - Groundwater leaching through in-pit spoil
 - Surface runoff from void
 - Groundwater loss from 'lake' (or make)
 - Evaporation loss (accounting for depth of void)


Need for strong linkage between surface and groundwater models

33

Dr Steve Perrens

Evans & Peck

(02) 9495 0500

sperrens@evanspeck.com