

Pumped hydro storage and 100% renewable electricity

Andrew Blakers, Bin Lu, Matt Stocks Australian National University

New generation capacity worldwide in 2016

PV learning curve

Net new generation capacity (GW) Estimate for 2016 & 2018 - worldwide

Net new generation capacity (GW) Estimate for 2016 & 2018 - Australia

Retirement of existing fossil fuel plant

- PV and wind are replacing retiring plant

Renewable electricity shares

- Tasmania: 100% now
- ACT: 100% by 2020
- South Australia: 75% by 2025
- Victoria: 40% by 2025
- Qld: 50% by 2030
- NT: 50% by 2030
- WA, NSW, Federal: no targets

Australian electricity supply & demand

100% renewable electricity is coming fast

Technical diversity

- often blows at night
- 90% PV and wind (+ existing hydro & biomass)
- Wide geographical dispersion hugely reduces required storage
 - High voltage interconnectors
- Demand management
 - Shift loads from night to day, interruptible loads
- Mass storage
 - Pumped hydro: 97% of all storage
 - Advanced batteries

High voltage DC transmission (HVDC)

Storage & HVDC belong together

HVDC: Transmit Gigawatts at Megavolts over thousands of km

Basslink: 400kV, 290km, 0.5GW

HVDC/AC backbones

Automated GIS pumped hydro site search

- Minimum head: 300m (200m in WA, NT)
- Minimum stored energy: 1 GWh
- Minimum pipe/tunnel slope: 1:15
- Exclude national parks and urban areas
- 99% of sites are off-river (closed loop)
- Research program
 - Find upper reservoirs
 - Find lower reservoirs and pair them
 - Develop public cost model (GHD, B&V, ANU)

SE-NSW

Araluen (near Canberra)

Next steps in STORES

Feature	Initial survey (2017)	Refined survey (2018-19)
Find upper reservoirs	Yes (22,000)	Yes
Lower reservoirs	-	Yes
Pairing of upper & lower	-	Yes
Minimum head (metres)	300	150
Dam wall height (metres)	40 (fixed)	10-80 (variable)
Minimum slope	1:15	1:15
Optimise penstock route	-	Yes
Integrate cost model	-	Yes
Ranking	-	Yes
Automated searching	-	Yes

China

USA

Indonesia

PHES: water and environment

- 100% renewables scenario
- Environment
 - Exclude national parks
 - Australia: 36 km² total reservoirs (5 ppm)
- Water
 - Water recycled; evaporation suppressors
 - PV/wind/PHES system uses ¼ of the water used by a coal-dominated system

Modelling 100% renewable electricity

- No heroic assumptions: only use technologies in mass production
 - PV, wind, pumped hydro, HVDC/AC
- Hourly demand, wind, sun data for 2006-10
- 90% PV + wind
 - 10% existing hydro and biomass
- Very widely distributed over 1 million km²
 - Wide range of weather, climate, demand
- Pumped hydro energy storage (PHES)
 - Plus batteries and demand management

Balancing 100% renewables

- Balancing cost = storage + HVDC + spillage
- For 100% renewables: \$25 per MWh
 - Storage = \$12
 - -HVDC = \$7
 - Spillage of PV/wind = \$6
- Storage requirements
 - 450 GWh of energy storage
 - 20 GW of storage power capacity
 - Spread across about 20 sites

All-in cost of electricity

Cost of hourly balancing

Balancing 100% = 20 GW + 450 GWh

Balancing 60% = Snowy 2.0 + 2GW for 6 hours

Eliminating emissions, sector by sector

Worldwide electricity supply & demand

Conclusions

- On-track for >70% renewables by 2030 at zero net cost
- Storage + HVDC supports a secure grid
- Effectively unlimited number of PHES sites
- PV + wind enables rapid decarbonisation
 - Deep cuts (80%) require elimination of fossil fuels
 - Variable PV and wind must do the heavy lifting
 - Electrify almost everything
- Vast opportunities for storage worldwide

