

Water should run down hill....

Levelling

Ellipsoid

Geoid

http://grace.jpl.nasa.gov/resources/6/

A surface on which the Earth's gravity potential is a constant (equipotential or level surface) and that closely approximates global mean sea level.

Height - from Tide Gauges

Tide Gauges

Newcastle East CORS (Courtesy Volker Janssen)

Tide gauge at Gandia, Spain. Courtesy

- Tide gauges measure Mean Sea Level (MSL)
- Location of tide gauge important to avoid estuarine currents or tidal gradients.
- Height of tide gauge must be transferred carefully to the mainland
- Movement of tide gauge monitored regularly.

http://eurogoos.eu/tide-gauge-task-team/

http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/pacificsealevel

Australian Height Datum (AHD71)

Problems with AHD

- Based on tide gauge obs from 1966-68 - the full 18.6 year lunar cycle (affects tides) not considered
- 1+ m North-South tilt due to ocean temperature not considered
- 0.5 m regional distortions
- Hierarchical adjustment strategy
- ~50+ years old marks move

GPS for heights?

GPS for Heights

- GPS gives ellipsoidal height (WGS84/ITRFxx)
- AHD heights refer to the MSL (approximates the geoid)
- Geoid/ellipsoid separation (N) must be determined and applied for GPS levelling

$$H = h - N$$

Physical ht (H) = ellipsoidal ht (h) – geoid/ellipsoid separation (N)

GPS is weak in height. Generally 2x worse than position

What is the Mathematical Shape of the Earth?

GPS coordinates (WGS84)

GDA94 GDA2020

ITRF2014

All compatible with WGS84

How do we compute N?

- Combination of historical astrogeodetic levelling, terrestrial gravity, airborne gravimetry and satellite geodesy.
- CHAMP, GOCE, GRACE & GRACE-FO provide data for new global geopotential models of the Earth.

CHAMP

GOCE

AUSGeoid

AusGeoid09: Converting GPS heights to AHD heights. www.ga.gov.au/webtemp/image_cache/GA16650.pdf

Figure 3. The different heights used to compute AUSGeoid09.

Estimated accuracy of Ausgeoid09 ± 0.05m absolute

www.ga.gov.au/ausgeoid

AusGeoid2020

- AUSGeoid2020 will be the latest geoid model for use in Australia to convert between ellipsoid heights and the Australian Height Datum (based on MSL).
- AUSGeoid2020 is designed for use with the new national datum, GDA2020.
- AUSGeoid2020 model will also provide an uncertainty value.
- GDA94 + AusGeoid09 = Physical height (AHD)
- GDA2020 + AusGeoid2020 = Physical height (AHD)
- Approx. difference bet. AusGeoid's = 9cm in height across Australia **

http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/ahdgm/ausgeoid2020

Why am I telling you all this?

Because water runs downhill on the geoid...

.... but not necessarily on the ellipsoid.

Be careful with which height system you are using.

UAVs

Advantages

- Simple structure
- High speed
- Long duration

Disadvantages

- Large take-off & landing space
- Not able to hover
- Inflexibility to carry different sensors

MultiRotor

Disadvantages

- High mechanical complexity
- Low speed
- Short flight time

Advantages

- Vertical take-off and landing
- Flexibility with different sensors
- Able to hover and stare

RPAs Imaging Sensors

(Remotely Piloted Aircraft)

RGB compact cameras

RGB DSLR cameras

NIR cameras

Thermal cameras

Multispectral cameras

Red edge

Image Distortion and Camera Selection

Distortion caused by lens:

- Consumer-grade cameras large distortion
- Geometric-cameras small distortion and geometrically stable

Distortion caused by moving camera:

- Electronic (rolling) shutter large distortion
- Focal plan (mechanical) shutter small distortion
- Leaf (mechanical) shutter no distortion (blurry?).

Camera selection:

- Avoid rolling shutter
- Leaf shutter right choice
- Focal plan shutter for low speed flight

Flight Planning (1)

All photogrammetric measurements are based on overlapped images in order to obtain 3-dimensional object geometry

Flight Planning (2)

Indirect (aerial triangulation) vs Direct georeferencing

Indirect georeferencing (AT)

- Requires GCPs
- Post processing
- More time consuming
- Achieves higher accuracy in height

Direct georeferencing

- No GCPs
- GNSS-IMUs
- Faster field time
- Comparable height accuracy

Courtesy Mian, Lutes et al, 2015

GSD variation due to terrain

GSD variation due to terrain changes

- Constant flight H above take-off location (120m)
- Different camera H above ground $\Delta H=80m$ (40m 120m)
- Large GSD variation: 2cm at hill top, 6cm at bottom
- No oblique images

Windy condition affects accuracy

Flight tracks off designed paths due to strong wind.

Less matched feature points in some areas

Water surface

Water surface cannot be mapped or precisely surveyed photogrammetrically

Point cloud validation

RTK (30 sec/epoch) check strings on hard surface areas

Point cloud validation (2) - Single flight + Nadir images

- Flight H = 120 m
- GCPs = 6
- Image overlaps = 80%
- Number of Images = 110
- Point cloud RTK string points:
 - Mean = -6.0 cm
 - Standard deviation = ±5.7 cm

Point cloud validation (3) - crossover flights + Nadir images

- Flight H = 80 m & 120 m
- GCPs = 6
- Image overlaps = 80%
- Number of Images = 220
- Point cloud RTK string points:
 - Mean = -5.6 cm
 - Standard deviation = ±5.4 cm

Point cloud validation (4)

- crossover flight (nadir) + Oblique images

- Flight H = 120 m
- GCPs = 6
- Image overlaps = 80%
- Number of Images = 330
- Point cloud RTK string points:
 - O Mean = +2.0 cm
 - Standard deviation = ±4.8 cm

Considerations for best practice using UAVs aerial mapping.

- Accuracy depends on GSD: Optimal $\sigma_{xy} = \pm 1$ GSD; $\sigma_z = \pm 1.5$ GSD
- 70% ≤ Image overlaps ≤ 90% : Number of GCPs ≥ 5
- GCP survey use RTK-GNSS ≥ 30 epochs (best with bipod) double occ
- Oblique Images improve accuracy significantly
- Time of the day = light cloudy or mid-day (less shadow)
- Large elevation variation = oblique images + variable flight H
- Slow ground speed (reduce motion blur)
- High resolution optical sensor (small GSD)
- Leaf shutter lens (avoid rolling shutter effects)
- High quality camera (less sensor or lens distortion)

Be careful with heights

